[1]龙佑梅,黄梨,王艳清,等.生物医学材料在盆底功能障碍性疾病中的应用进展[J].中国计划生育和妇产科,2019,(5):42-44,65.
点击复制

生物医学材料在盆底功能障碍性疾病中的应用进展
分享到:

《中国计划生育和妇产科》[ISSN:1674-4020/CN:51-1708/R]

卷:
期数:
2019年5期
页码:
42-44,65
栏目:
综述
出版日期:
2019-05-25

文章信息/Info

作者:
龙佑梅黄梨王艳清程艳香*
武汉大学人民医院妇产科
关键词:
盆底功能障碍性疾病合成网片生物医学材料生物相容性仿生
分类号:
R 318.08

参考文献/References:

[1]HALLOCK J L,HANDA V L. The epidemiology of pelvic floor disorders and childbirth: an update [J]. Obstetrics and Gynecology Clinics of North America,2016,43 (1): 1-13. [2]Gigliobianco G,Sabiniano Romanet,Nadir I Osman,et al. Biomaterials for pelvic floor reconstructive surgery: how can we do better? [J]. BioMed Research International,2015, 1-20. [3]KONTOGIANNIS S G,Giannitsas K,Goulimi E. Reasons for and against use of non-absorbable,synthetic mesh during pelvic organ prolapse repair,according to the prolapsed compartment [J]. Advances in Therapy,2016,33 (12): 2139-2149. [4]Reynolds S W,Karen P Gold,Shenghua Ni,et al.Immediate effects of the initial FDA notification on the use of surgical mesh for pelvic organ prolapse surgery in Medicare beneficiaries [J]. Neurourology and Urodynamics,2013,32 (4): 330-335. [5]CHANG Yu-e,SUN Xiu-li,LI Qi,et al. Silk fibroin scaffold as a potential choice for female pelvic Reconstruction: a study on the biocompatibility in abdominal wall,pelvic,and vagina [J]. Microscopy Research and Technique,2017,80 (3,SI): 291-297. [6]Vashaghian M,Alejandra M,Ruiz‐Zapata,et al. Toward a new Generation of pelvic floor implants with electrospun nanofibrous matrices:A feasibility study [J]. Neurourology and Urodynamics,2017,36 (3): 565-573. [7]Wu G,Deng H,Jiang T,et al.Regulating the gaps between folds on the surface of silk fibroin membranes via LBL deposition for improving their biomedical properties [Z],2017: 228-238. [8]SIMON-ALLUE R,Ortillés A,Calvo B. Calvo,mechanical behavior of surgical meshes for abdominal wall repair:in vivo versus biaxial characterization [Z],2018: 102-111. [9]Balsamo R,Illiano E,Zucchi A,et al.Sacrocolpopexy with polyvinylidene fluoride mesh for pelvic organ prolapse:Mid term comparative outcomes with polypropylene mesh [Z],2018: 74-78. [10]LU Yao,ZHANG Pei-hua. Fabrication and evaluation of a warp knitted polypropylene/polylactic acid composite mesh for pelvic floor repair [J]. Textile Research Journal,2018,88 (10): 1099-1111. [11]Thomas D,DemetresM,Jennifer T,et al.Anger Histologic inflammatory response to transvaginal polypropylene mesh:a systematic review [Z],2018: 11-22. [12]BOEHM G,GROLL J,HEFFELS K H,et al. Influence of MMP inhibitor GM6001 loading of fibre coated polypropylene meshes on wound healing: Implications for hernia repair [J]. Journal of Biomaterials Applications,2018,32 (10): 1343-1359. [13]Yao Q,Cosme JG,Xu T,et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation [Z],2017: 115-127. [14]MA Ke,QIU Yi-ping,FU Ya-qin,et al. Electrospun sandwich configuration nanofibers as transparent membranes for skin care drug delivery systems [J]. Journal of Materials Science,2018,53 (15): 10617-10626. [15]Abdal-Hay A,L D Tijing,J K Lim. Characterization of the surface biocompatibility of an electrospun nylon 6/CaP nanofiber scaffold using osteoblasts [J]. Chemical Engineering Journal,2013,215-216(complete): 57-64. [16]Pant R H,Risal P,C H Park,et al.Core–shell structured electrospun biomimetic composite nanofibers of Calcium lactate/nylon-6 for tissue engineering [Z],2013: 90-98. [17]SHAHZADI L,ZEESHAN R,YAR M,et al. Biocompatibility through cell attachment and cell proliferation studies of nylon 6/chitosan/ha electrospun Mats [J]. Journal of Polymers and the Environment,2018,26(5): 2030-2038. [18]VASHAGHIAN M,RUIZ-ZAPATA A M,KERKHOF M H,et al. Toward a new Generation of pelvic floor implants with electrospun nanofibrous matrices: a feasibility study [J]. Neurourology and Urodynamics,2017,36 (3): 565-573. [19]CECCARELLI G,PRESTA R,LUPI S M,et al. Evaluation of poly(lactic-co-glycolic) acid alone or in combination with hydroxyapatite on Human-Periosteal cells bone differentiation and in sinus lift treatment [J]. Molecules,2017,22 (12): 2109. [20]SHAO Wei-li,HE Jian-xin,WANG Qian,et al. Biomineralized poly( l-lactic-co-glycolic acid)/graphene oxide/tussah silk fibroin nanofiber scaffolds with multiple orthogonal layers enhance osteoblastic differentiation of mesenchymal stem cells [J]. ACS BIOMATERIALS SCIENCE & ENGINEERING,2017,3 (7): 1370-1380. [21]KUNDU B,KURLAND N E,BANO S,et al. Silk proteins for biomedical applications: Bioengineering perspectives [J]. Progress in Polymer Science,2014,39 (2): 251-267. [22]Koh L,Cheng Y,Teng C P,et al.Structures,mechanical properties and applications of silk fibroin materials [Z],2015: 86-110. [23]GUILLAUME O,PARK J,MONFORTE X,et al. Fabrication of silk mesh with enhanced cytocompatibility: preliminary in vitro investigation toward cell-based therapy for hernia repair[J]. Journal of Materials Science - Materials in Medicine,2016,27 (2):37. [24]PINTO D S T,Alves LA,Cardozo G A,et al. Layer-by-layer self-assembly for carbon dots/chitosan-based multilayer:Morphology,thickness and molecular interactions [Z],2017: 81-89. [25]Li X,Tu H,Huang MT,et al.Incorporation of lysozyme-rectorite composites into chitosan films for antibacterial properties enhancement [Z],2017: 789-795. [26]RAMANATHAN G M,Muthukumar T,Sivagnanam U T,et al. In vivo efficiency of the collagen coated nanofibrous scaffold and their effect on growth factors and pro-inflammatory cytokines in wound healing [Z],2017: 45-55. [27]Kaczmarek B,Sionkowska A,Lukowicz K,et al. The cells viability study on the composites of chitosan and collagen with glycosaminoglycans isolated from fish skin [Z],2017: 166-168. [28]CHENG Gu,CHEN Jia-jia,WANG Qun,et al. Promoting osteogenic differentiation in pre-osteoblasts and reducing tibial fracture healing time using functional nanofibers [J]. Nano Research,2018,11 (7): 3658-3677. [29]G M,Cama G,Dash M,et al.Chitosan functionalized poly-ε-caprolactone electrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications [Z],2018: 127-135.

相似文献/References:

[1]张仙,帅翰林,蒋学风,等.自裁聚丙烯非标准网片治疗重度女性盆底功能障碍性疾病的中期疗效观察[J].中国计划生育和妇产科,2010,(06):0.
 ZHANG Xian,SHUAI Han-lin,JIANG Xue-feng,et al.[J].Chinese Journal of Family Planning & Gynecotokology,2010,(5):0.
[2]洪莉.盆底功能障碍性疾病康复治疗的评价[J].中国计划生育和妇产科,2016,(08):0.
[3]冯艳霞,张洁,张月,等.产后盆底康复治疗研究进展[J].中国计划生育和妇产科,2016,(08):0.
[4]杨丹.女性盆底功能障碍性疾病的研究进展[J].中国计划生育和妇产科,2017,(2):11.
[5]江宁珠*,姜伟,敖贵文,等.经会阴超声对女性盆底功能障碍性疾病的临床应用观察[J].中国计划生育和妇产科,2017,(6):69.
 JIANG Ning-zhu*,JIANG Wei,AO Gui-wen,et al.Clinical application of transperineal ultrasound in female pelvic floor dysfunction[J].Chinese Journal of Family Planning & Gynecotokology,2017,(5):69.
[6]王梅,罗新*.高龄产妇盆底康复治疗研究现状[J].中国计划生育和妇产科,2017,(5):11.
 WANG Mei,LUO Xin*.Research status of rehabilitation of pelvic floor in elderly puerpera[J].Chinese Journal of Family Planning & Gynecotokology,2017,(5):11.
[7]刘耀丹,洪莉*.盆底电刺激技术的机制研究及临床应用进展[J].中国计划生育和妇产科,2017,(7):21.
[8]万虹,陈德新*,庄琳,等.经阴道尿道中段线性悬吊术治疗压力性尿失禁 的疗效评价[J].中国计划生育和妇产科,2017,(7):34.
 WAN Hong,CHEN De-xin*,ZHUANG Lin,et al.Efficacy of transvaginal linear suspension in the middle of the urethra in the treatment of stress urinary incontinence[J].Chinese Journal of Family Planning & Gynecotokology,2017,(5):34.
[9]李玢*,邓卓,甘露,等.关于改良差速贴壁法原代培养大型成年哺乳动物绵羊肌源性干细胞的研究[J].中国计划生育和妇产科,2017,(12):25.
 LI Bin*,DENG Zhuo,GAN Lu,et al.A study on isolation and purification adult sheep muscle-derived stem cells by modified preplate technique[J].Chinese Journal of Family Planning & Gynecotokology,2017,(5):25.
[10]王延洲,梁志清*.单孔腹腔镜手术及经自然腔道内镜手术技术应用于女性盆底功能障碍性疾病的利弊探索[J].中国计划生育和妇产科,2019,(3):8.

更新日期/Last Update: 2019-05-25