参考文献/References:
[1]Giarenis I, Robinson D. Prevention and management of pelvic organ prolapse [J]. F1000 Prime Rep, 2014,6 (6):77.
[2]JIA X, Glazener C, Mowatt G, et al. Efficacy and safety of using Mesh or grafts in surgery For anterior and/or posterior vaginal wall prolapse:systematic review and meta-analysis [J]. BJOG, 2008, 115 (11): 1350-1361.
[3]Ruiz-Zapata AM, Kerkhof MH, Zandieh-Doulabi B, et al. Functional characteristics of vaginal fibroblastic cells from premenopausal women with pelvic organ prolapse [J]. Mol Hum Reprod, 2014, 20 (11): 1135-1143.
[4]Roman S, Mangera A, Osman NI, et al. Developing a tissue engineered repair material for treatment of stress urinary incontinence and pelvic organ prolapse-which cell source? [J]. Neurourol Urodyn, 2014, 33 (5): 531-537.
[5]Ho MH, Heydarkhan S, Vernet D, et al. Stimulating vaginal repair in rats through skeletal Muscle-Derived stem cells seeded on small intestinal submucosal scaffolds [J]. Obstet Gynecol, 2009, 114 (2): 300-309.
[6]Chen B, Dave B. Challenges and future prospects for tissue engineering in female pelvic medicine and reconstructive surgery [J]. Curr Urol Rep, 2014, 15 (8): 425.
[7]Hsiao ST, Asgari A, Lokmic Z, et al. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue [J]. Stem Cells Dev, 2012, 21 (12): 2189-2203.
[8]Dissaranan C, Cruz MA, Kiedrowski MJ, et al. Rat mesenchymal stem cell secretome promotes elastogenesis and facilitates recovery from simulated childbirth injury [J]. Cell Transplant, 2014, 23 (11): 1395-1406.
[9]Boennelycke M, Gras S, Lose G. Tissue engineering as a potential alternative or adjunct to surgical Reconstruction in treating pelvic organ prolapse [J]. Int Urogynecol J, 2013, 24 (5): 741-747.
[10]LI Yan-an, LIU Fang-fang, ZHANG Zhi-qiang, et al. Bone marrow mesenchymal stem cells could acquire the phenotypes of epithelial cells and accelerate vaginal Reconstruction combined with small intestinal submucosa [J]. Cell Biol Int, 2015, 39 (11): 1225-1233.
[11]Iyyanki TS, Dunne LW, ZHANG Qi-xu, et al. Adipose-Derived Stem-Cell-Seeded Non-Cross-Linked porcine acellular dermal matrix increases cellular infiltration, vascular infiltration, and mechanical strength of ventral hernia repairs [J]. Tissue Eng Part A, 2015, 21 (3/4): 475-485.
[12]Klinger A, Kawata M, Villalobos M, et al. Living scaffolds: surgical repair using scaffolds seeded with human adipose-derived stem cells [J]. Hernia, 2016, 20 (1): 161-170.
[13]WU Q, DAI M, XU P, et al. In vivo effects of human adipose-derived stem cells reseeding on acellular bovine pericardium in nude mice [J]. Exp Biol Med (Maywood), 2016, 241 (1): 31-39.
[14]Huang CC, Liu CY, Huang CY, et al. Carbodimide cross-linked and biodegradation-controllable small intestinal submucosa sheets [J]. Biomed Mater Eng, 2014, 24 (6): 1959-1967.
[15]Ochoa I, Pea E, Andreu EJ, et al. Mechanical properties of cross-linked collagen meshes after human adipose derived stromal cells seeding [J]. J Biomed Mater Res A, 2011, 96 (2): 341-348.
[16]Spelzini F, Manodoro S, Frigerio MA, et al. Stem cell augmented mesh materials: an in vitro and in vivo study [J]. Int Urogynecol J, 2015, 26 (5): 675-683.
[17]Konar S, Guha R, Kundu B, et al. Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion [J]. Hernia, 2017, 21 (1): 125-137.
[18]LI Qi, WANG Jianliu, LIU Haifeng, et al. Tissue-engineered mesh for pelvic floor Reconstruction fabricated from silk fibroin scaffold with adipose-derived mesenchymal stem cells [J]. Cell Tissue Res, 2013, 354 (2): 471-480.
[19]Marei NH, El-Sherbiny IM, Lotfy AA, et al. Mesenchymal stem cells growth and proliferation enhancement using PLA vs PCL based nanofibrous scaffolds [J]. Int J Biol Macromol, 2016, 93 (A): 9-19.
[20]Lee JJ, Yu HS, Hong SJ, et al. Nanofibrous membrane of collagen-polycaprolactone for cell growth and tissue regeneration [J]. J Mater Sci Mater Med, 2009, 20 (9): 1927-1935.
[21]Lee JH, Nam J, Kim HJ, et al. Comparison of three different methods for effective introduction of platelet-rich plasma on PLGA woven mesh [J]. Biomedical Materials, 2015, 10 (2): 025002.
[22]GAO Yu-e, LIU Li-jia, Blatnik JA, et al. Methodology of fibroblast and mesenchymal stem cell coating of surgical meshes: A pilot analysis [J]. J Biomed Mater Res B Appl Biomater, 2014, 102 (4): 797-805.
[23]Dolce CJ, Stefanidis D, Keller JE, et al. Pushing the envelope in biomaterial research:initial results of prosthetic coating with stem cells in a rat model [J]. Surg Endosc, 2010, 24 (11): 2687-2693.
[24]Mohajeri S, Hosseinkhani H, Ebrahimi NG, et al. Proliferation and differentiation of mesenchymal stem cell on collagen sponge reinforced with polypropylene/polyethylene terephthalate blend fibers [J]. Tissue Eng Part A, 2010, 16 (12): 3821-3830.
[25]GE Liang-peng, LI Qing-tao, JIANG Jun-zi, et al. Integration of nondegradable polystyrene and degradable gelatin in a core-sheath nanofibrous patch for pelvic Reconstruction [J]. Int J Nanomedicine, 2015, 10 (4): 3193-3201.
[26]Ulrich D, Edwards SL, SU Kai, et al. Human endometrial mesenchymal stem cells modulate the tissue response and mechanical behavior of polyamide mesh implants for pelvic organ prolapse repair [J]. Tissue Eng Part A, 2014, 20 (3/4): 785-798.
[27]Edwards SL, Ulrich D, White JF, et al. Temporal changes in the biomechanical properties of endometrial mesenchymal stem cell seeded scaffolds in a rat model [J]. Acta Biomater, 2015, 63 (13):286-294.
[28]Blazquez R, Miguel Sanchez-Margallo F, Alvarez V, et al. Surgical meshes coated with mesenchymal stem cells provide an anti-inflammatory environment by a M2 macrophage polarization [J]. Acta Biomater, 2016, 31 (2): 221-230.
[29]Udpa N, Iyer SR, Rajoria R, et al. Effects of chitosan coatings on polypropylene mesh for implantation in a rat abdominal wall model [J]. Tissue Eng Part A, 2013, 19 (23/24): 2713-2723.
[30]ZHANG Dan-dan, LIN Zhi-yuan (william), CHENG Ruo-yu, et al. Reinforcement of transvaginal repair using polypropylene mesh functionalized with basic fibroblast growth factor [J]. Colloids Surf B Biointerfaces, 2016, 142 (6): 10-19.
相似文献/References:
[1]胡鸣,洪莉,洪莎莎,等.人子宫旁韧带成纤维细胞机械力作用下线粒体形态与细胞衰老的研究[J].中国计划生育和妇产科,2015,(04):0.
HU Ming,HONG Li,HONG Sha-sha,et al.[J].Chinese Journal of Family Planning & Gynecotokology,2015,(11):0.
[2]王莹莹,王君敏,吴惠琰,等.盆腔脏器脱垂易感基因研究现状[J].中国计划生育和妇产科,2019,(5):48.
[3]王莹莹,王君敏,陈璐璐,等.Wnt/β-catenin信号通路及WNK 1基因在盆腔脏器脱垂发病机制中的作用[J].中国计划生育和妇产科,2019,(5):56.
WANG Ying-ying,WANG Jun-min,CHEN Lu-lu,et al.The role of Wnt/β-catenin signaling pathways and WNK 1 in the pathogenesis of pelvic organ prolapse[J].Chinese Journal of Family Planning & Gynecotokology,2019,(11):56.
[4]陶有平,王翠翠,徐应利,等.全子宫切除术后重建宫颈阴道环对预防盆底脏器脱垂的临床疗效观察[J].中国计划生育和妇产科,2021,(7):55.[doi:10.3969/j.issn.1674-4020.2021.07.17]
Observation on the clinical effect of reconstruction of cervix-vaginal ring after total hysterectomy on prevention of pelvic floor organ prolapse[J].Chinese Journal of Family Planning & Gynecotokology,2021,(11):55.[doi:10.3969/j.issn.1674-4020.2021.07.17]